Em uma região com grande incidência de terremotos, observou-se que dois terremotos ocorridos apresentaram magnitudes M1, e M2, medidos segundo a escala Richter, e liberaram energias iguais a E1, e E2, respectivamente. Entre os estudiosos do assunto, é conhecida uma expressão algébrica relacionando esses valores dada por

Estudos mais abrangentes observaram que o primeiro terremoto apresentou a magnitude M1 = 6.9 e a energia liberada foi um décimo da observada no segundo terremoto.
O valor aproximado da magnitude M2, do segundo terremoto, expresso com uma casa decimal, é igual a
A) 5,4
B) 6,2
C) 7,6
D) 8,2
E) 8,4

Resolução em texto
Matérias Necessárias para a Solução:
- Matemática (logaritmos) e interpretação de fórmulas algébricas.
Nível da Questão: Médio.
Gabarito: Alternativa C.
1º Passo: Análise do Comando e Definição do Objetivo
Comando da Questão: Determinar o valor aproximado da magnitude M2, utilizando a relação algébrica fornecida e as condições descritas no enunciado.
Palavras-chave:
- “Magnitudes
”
- “Energia
é um décimo da energia
”
- “Escala Richter.”
Objetivo: Substituir os valores fornecidos na equação dada e calcular o valor de considerando que
⚠️ Dica Geral: Lembre-se que, ao trabalhar com logaritmos, o termo pode ser simplificado como
o que pode agilizar os cálculos.
2º Passo: Tradução e Interpretação do Texto
O enunciado estabelece que:
- O primeiro terremoto apresentou uma magnitude M1=6,9 e energia E1.
- A energia E1 do primeiro terremoto é 1/10 da energia E2 do segundo, ou seja:
- Deseja-se calcular a magnitude M2 do segundo terremoto utilizando a equação:
Conclusão parcial: Substituímos os valores fornecidos na equação para determinar M2.
3º Passo: Explicação de Conceitos Necessários
- Escala Richter: Utilizada para medir a magnitude de terremotos, relaciona a energia liberada durante o evento a uma escala logarítmica.
- Propriedade dos logaritmos: A relação fornecida utiliza o logaritmo da razão entre E2 e E1. É importante lembrar:
- Equação Base: Substituímos E1=0,1E2 na equação:
4º Passo: Análise das Alternativas
- Substituímos os valores:
- Simplificando o argumento do logaritmo:
- Aplicamos a fórmula
- Sabendo que log(10)=1
- Calculamos o valor:
- Arredondando para uma casa decimal:
Conclusão: A alternativa correta é a C.
5º Passo: Conclusão e Justificativa Final
Conclusão: A magnitude M2 do segundo terremoto é 7,6, obtida ao aplicar a relação fornecida com os valores substituídos.
Resumo Final: A relação logarítmica entre as magnitudes e energias dos terremotos, considerando resulta na magnitude M2=7,6. Assim, a alternativa correta é a C.