Um aplicativo de relacionamentos funciona da seguinte forma: o usuário cria um perfil com foto e informações pessoais, indica as características dos usuários com quem deseja estabelecer contato e determina um raio de abrangência a partir da sua localização. O aplicativo identifica as pessoas que se encaixam no perfil desejado e que estão a uma distância do usuário menor ou igual ao raio de abrangência. Caso dois usuários tenham perfis compatíveis e estejam numa região de abrangência comum a ambos, o aplicativo promove o contato entre os usuários, o que é chamado de match.
O usuário P define um raio de abrangência com medida de 3 km e busca ampliar a possibilidade de obter um match se deslocando para a região central da cidade, que concentra um maior número de usuários. O gráfico ilustra alguns bares que o usuário P costuma frequentar para ativar o aplicativo, indicados por I, II, III, IV e V.
Sabe-se que os usuários Q, R e S, cujas posições estão descritas pelo gráfico, são compatíveis com o usuário P, e que estes definiram raios de abrangência respectivamente iguais a 3 km, 2 km e 5 km.

Com base no gráfico e nas afirmações anteriores, em qual bar o usuário P teria a possibilidade de um match com os usuários Q, R e S, simultaneamente?
A) I.
B) II.
C) III.
D) IV.
E) V.

Resolução em Texto
Informações Iniciais
- Matérias Necessárias: Geometria Analítica (cálculo de distância), Interpretação de Gráficos.
- Nível da Questão: Médio.
- Gabarito: A.
Passo 1: Análise do Comando e Definição do Objetivo
📌 Análise do Comando:
A questão descreve um aplicativo de relacionamentos que utiliza raios de abrangência para promover encontros (“match”) entre usuários. O usuário P possui um raio de 3 km e deseja encontrar outros usuários compatíveis em bares diferentes (I, II, III, IV, V), conforme o gráfico fornecido.
🔹 Palavras-chave:
- Raio de abrangência
- Match
- Distância
- Bares I, II, III, IV, V
✔ Objetivo da Questão:
Identificar em qual bar o usuário P consegue ter match simultaneamente com os usuários Q, R e S, dados os respectivos raios de cada um:
- P: 3 km
- Q: 3 km
- R: 2 km
- S: 5 km
Passo 2: Explicação de Conceitos Necessários
📌 Cálculo de Distância em um Plano (Geometria Analítica):
Para verificar se um ponto (bar) está dentro do raio de abrangência de um usuário, calculamos a distância entre as duas coordenadas. A distância d entre os pontos (x1, y1) e (x2, y2) é:
d = √((x2 – x1)² + (y2 – y1)²)
🔹 Ideia de Intersecção de Regiões:
Cada usuário (P, Q, R, S) define um círculo de abrangência em torno de sua localização. O bar que estiver dentro de todos os círculos simultaneamente possibilita o match para todos.
Passo 3: Tradução e Interpretação do Texto
📌 Análise do Contexto:
- O usuário P se desloca entre bares, cada um com uma posição específica no gráfico.
- Para haver match, o bar escolhido deve estar dentro do raio de abrangência de P, Q, R e S.
🔹 Frases-Chave do Enunciado:
- “raio de abrangência … igual ou menor que a distância”
- “possibilidade de um match com usuários Q, R e S”
- “bare indicado por I, II, III, IV e V”
✔ Conversão em Termos Matemáticos:
Verifica-se em qual ponto (bar) do plano todas as condições de distância ≤ raio são satisfeitas (para P, Q, R e S).
Passo 4: Desenvolvimento do Raciocínio e Cálculos
📌 Verificação das Distâncias:
- Localização aproximada dos usuários:
- P: (próximo ao ponto 0,0).
- Q: (região ~2,7).
- R: (região ~6,7).
- S: (região ~5,3).
- Raios de Abrangência:
- P: 3 km.
- Q: 3 km.
- R: 2 km.
- S: 5 km.
- Posições dos Bares (I, II, III, IV, V):
- Cada bar aparece no gráfico em torno das coordenadas entre x = 3 e x = 5, y = 4 a 6.
- Verifica-se, ponto a ponto, se o bar está dentro do círculo de cada usuário.
- Intersecção (Match para Todos):
- Somente o Bar I fica simultaneamente dentro do raio de 3 km de Q, 2 km de R e 5 km de S.
- Os demais bares (II, III, IV, V) acabam ficando fora do raio de ao menos um dos usuários (especialmente R, que tem raio menor, 2 km).

Passo 5: Análise das Alternativas e Resolução
📌 Reescrita das Alternativas:
- A) I
- B) II
- C) III
- D) IV
- E) V
✅ Alternativa Correta:
- A) I: O bar I localiza-se dentro da sobreposição dos raios de P (3 km), Q (3 km), R (2 km) e S (5 km), garantindo match simultâneo.
❌ Alternativas Incorretas:
- B, C, D, E: Em cada um desses bares, ao menos um dos usuários (sobretudo R, com raio 2 km) não alcança a região do bar. Por isso, não há match simultâneo para todos.
Passo 6: Conclusão e Justificativa Final
📌 Resumo do Raciocínio:
A posição do Bar I é a única que atende a todas as restrições de distância impostas pelos raios de abrangência de P, Q, R e S.
🔍 Resumo Final:
🔍 Portanto, o único bar em que o usuário P teria um match com Q, R e S, todos ao mesmo tempo, é o Bar I, correspondente à alternativa A.